

Tetrahedron Letters 41 (2000) 959-961

TETRAHEDRON LETTERS

Synthesis of aryl α-keto-acids via the Cu-catalyzed conversion of aryl nitroaldol products

Milind D. Nikalje, Iliyas Sayyed Ali, Gajanan K. Dewkar and A. Sudalai *

Process Development Division, National Chemical Laboratory, Pune, India

Received 13 September 1999; revised 19 November 1999; accepted 24 November 1999

Abstract

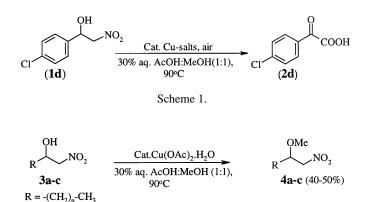
Cu(II) salts efficiently catalyze the conversion of a variety of aryl nitroaldol products to afford the corresponding aryl α -keto-acids in high yields using 30% aq. AcOH:MeOH (1:1) as the solvent. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: nitroaldol; conversion; catalyst; keto-acid.

We wish to report a new catalytic method for the synthesis of α -keto-acids in a single step from a variety of aryl nitroaldol products, prepared from Henry reactions.¹ Several synthetic procedures have been reviewed in the literature for the synthesis of α -keto-acids which involve multiple steps or use costly or hazardous reagents.² The use of stoichiometric anhydrous CuSO₄ has been reported for the conversion of 1-alkyl-2-nitrocyclohexanols to nitroketones via a retro-Henry reaction.³ We here report that catalytic Cu-salts in 30% aq. AcOH:MeOH (1:1) can be useful for the conversion of aryl nitroaldol products into aryl α -keto-acids (Scheme 1). Table 1 shows a comparative study of the use of Cu-salts and other oxidizing reagents for the conversion of aryl nitroaldol products to α -keto-acids.

The results of Cu(II)-salt catalyzed conversion of aryl nitroaldol products to the corresponding α -keto-acids[†] is summarized in Table 2. The catalytic activity of CuSO₄·5H₂O was found to be low when compared to Cu(OAc)₂·H₂O towards the reaction. It was observed that, for aryl nitroaldol products

^{*} Corresponding author. E-mail: sudalai@dalton.ncl.res.in (A. Sudalai)


[†] Typical experimental procedure: A mixture of 1-(4-chlorophenyl)-2-nitroethanol (0.5 g; 2.48 mmol), $Cu(OAc)_2 \cdot H_2O$ (0.05 g, 10 mol%) and 30% aq. AcOH:MeOH (1:1, 10 ml) was heated under reflux at 90°C (bath temperature) for 3 h. After 1 h, progress of the reaction could be seen by the formation of a solid product precipitating from the reaction mixture (also monitored by TLC, 15% EtOAc in pet-ether). The reaction mixture was then poured into water and extracted with EtOAc (25 ml×3) and dried over anhydrous Na₂SO₄. Removal of solvent under reduced pressure gave the crude α -keto-acid (0.45 g) which was purified by column chromatography (7% EtOAc in pet-ether). Yield: 93%; m.p. 92–94°C; IR (cm⁻¹): 3045, 2924, 1775, 1702, 1674, 1576, 1592, 1490, 1206, 1102, 968, 942; ¹H NMR (200 MHz, CDCl₃): δ (7.37, d *J*=8 Hz, 2H), (7.85, d *J*=8 Hz, 2H). ¹³C NMR (50.3 MHz, CDCl₃): δ 129.62, 130.59, 135.19, 141.05, 165.02, 191.13; MS: *m/z* (% rel. intensity): M⁺, 184(1), 183(10), 166(1), 148(20), 136(67), 125(15), 101(100), 89(21), 75(50) 63(3), 57(1). Anal. C₈H₅ClO₃: requires: C, 52.06, H, 2.73, Cl, 19.21%; found: C, 51.99, H, 2.70, Cl, 19.01%.

^{0040-4039/00/\$ -} see front matter © 2000 Elsevier Science Ltd. All rights reserved. P11: S0040-4039(99)02179-6

Table 1
Reactions of 1-(4-chlorophenyl)-2-nitroethanol (1d) with various catalysts ^a

No	Reagent/Catalyst	Reaction condition	T/h	Product (2d)	Yield $(\%)^{b}$
1	MnO ₂	Benzene, 80 °C	8	2-(4-Chlorophenyl)-2- oxoacetic acid	46
2	DMSO-oxalyl chloride-Et ₃ N	CH ₂ Cl ₂ , -43 °C	4	2-(4-Chlorophenyl)-2- oxoacetic acid	60
3	Cu(OAc) ₂ .H ₂ O	30% aq. AcOH:MeOH (1:1), 90 °C	4	2-(4-Chlorophenyl)-2- oxoacetic acid	93
4	CuSO ₄ .5H ₂ O	30% aq. AcOH:MeOH (1:1), 90 °C	4	2-(4-Chlorophenyl)-2- oxoacetic acid	97
5	CuCl ₂	30% aq. AcOH:MeOH (1:1), 90 °C	4	2-(4-Chlorophenyl)-2- oxoacetic acid	90
6	CuI	30% aq. AcOH:MeOH (1:1), 90 °C	4	2-(4-Chlorophenyl)-2- oxoacetic acid	70

a: Nitroaldol product (5 mmol); catalyst (10 mol%); solvent (10 ml); b: Isolated yield after chromatographic purification;

n = 1, 3, 4

bearing electron-withdrawing groups such as NO₂ and CN, the rate of reaction is slower than for substrates with electron-donating groups. It is remarkable that in the case of substrates with NO₂ and quinoline moieties (entries 1j–k), the reaction stops at the keto-aldehyde stage without undergoing further oxidation to the corresponding acid. Under similar conditions aliphatic analogues (**3a**–c) undergo reaction to produce nitroalkyl ethers (**4a**–c) instead of undergoing conversion to α -keto-acids (Scheme 2).

Analysis of the reaction mixture hourly using ¹H NMR spectroscopy indicated that the reaction mixture contained both the α -keto-aldehyde and the α -keto-acid. As time progressed, the yield of α -keto-acid increased with a concurrent decrease of α -keto-aldehyde.

In conclusion, the results described herein demonstrate the novelty of Cu-salts as efficient catalysts for the conversion of aryl nitroaldol products to the corresponding α -keto-acids in high yields. For aliphatic analogues, nucleophilic displacement with MeOH leads to the formation of nitroalkyl ethers in moderate yields instead of the conversion to α -keto-acids. It may be noted that α -keto-acids are of biological interest as intermediates in amino acid metabolism, as participants in the citric acid cycle and as intermediates in other biological reactions.⁴ Table 2 Cu(II)-catalyzed conversion of aryl nitroaldol products to α-keto-acids^a

	Substrate Ar		Product ^b	Yield ^c (%)		0.cf
No	(1)	t/h	(2)	Cu ^d	Cu ^e	m.p.ºC ^f
la	Ph	4	2-Oxo-2-phenylacetic acid	61	45	67-69 (66)
1b	4-Methylphenyl	4	4-Methylphenyl-2-oxoacetic acid	88	50	97-99 (97)
1c	4-Methoxyphenyl	4	2-(4-Methoxyphenyl)-2-oxoacetic acid	87		93-95 (93)
1d	4-Chlorophenyl	3	2-(4-Chlorophenyl)-2-oxoacetic acid	93	97	92-94 (92-93)
1e	4-Cyanophenyl	5	2-(4-Cyanophenyl)-2-oxoacetic acid	41	35	138 (dec.)
1f	3,4,5–Trimethoxyphenyl	3	2-(3,4,5-Trimethoxyphenyl) -2- oxoacetic acid	80	41	114-115
1g	3-Nitro-4-methylphenyl	4	2-(3-Nitro-4-methylphenyl)-2- oxoacetic acid	75	60	165-167
1h	2-Naphthyl	4	2-Oxo-2-naphthylacetic acid	59	-	90-92 (91-92)
1i	2-Furyl	4	2-Oxo-2-furylacetic acid	72	-	98-100 (98)
1j	4-Nitrophenyl	5	2-(4-Nitrophenyl)-2-oxo- acetaldehyde	50	30	95-97
1k	3-Chloro-2- quinolinyl	4	2-(3-Chloroquinolinyl)- 2-oxoacetaldehyde	41	_	112-115

a) Nitroaldol product (5 mmol); Cu(II) catalyst (10 mol%), 30% aq.AcOH : MeOH (1:1, 15 ml), 90 °C; b) Thoroughly characterized by IR, ¹H & ¹³C NMR, MS and elemental analysis; c) Isolated yield after chromatographic purification; d) Cu(OAc)₂.H₂O; c) CuSO₄. 5H₂O; f) Number in parenthesis refers to literature m.p.

Acknowledgements

M.D.N. thanks CSIR for SRF. We thank Dr. S. Devotta (Head, PD-Division) for his constant encouragement to carry out the above work.

References

- 1. Ballini, R.; Bosica, G. J. Org. Chem. 1997, 62, 425.
- 2. Cooper, A. J. L.; Ginos, J. Z.; Meister, A. Chem. Rev. 1983, 83, 321.
- 3. Saikia, A. K.; Hazarika, M. J.; Barua, N. C.; Bezbarva, M. S.;. Sharma, R. P.; Ghosh, A. C. Synthesis 1996, 981.
- 4. Meister, A. Methods Enzymol. 1957, 3, 404.